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tive; only small amounts of methane were detected in both 
types of reaction systems. We conclude that small metal par­
ticles probably were not responsible for the catalysis in this 
iridium system.22'23 

A selective Fischer-Tropsch synthesis, of great technological 
significance, has never been demonstrated. Our new catalytic 
hydrogenation system based on Ir4(CO)i2 clearly presents the 
possibility of such a selective synthesis. In addition, the pre­
liminary results raise many intriguing scientific questions. For 
example, iridium metal is a relatively poor CO hydrogenation 
catalyst and iron and ruthenium metal are particularly ac­
tive,24 whereas in our reaction system Ir^CO) 12 is more active 
than Ru3(CO)i2 and Fe3(C0)n is inactive. What is the re­
action mechanism here? Is there any formal mechanistic re­
lationship between our reaction and the metal or metal 
oxide8-based syntheses? We offer no speculation on reaction 
mechanism,25 but are investigating this complex issue through 
kinetic, spectroscopic, and isolation studies. Alternative cat­
alyst precursors and alternative acidic or acceptor solvents are 
being examined. With respect to the latter, two observations 
are particularly noteworthy. The reaction medium appears to 
require "acidic" character since we find molten NaAlCl4 to 
be relatively ineffective under our reaction conditions. Com­
position of the hydrocarbon product mixture is almost quali­
tatively altered in going from a chloride to a bromide-based 
melt in that propane became a major product with a NaBr-
2AlBr3 reaction medium. Hence, the character of the reaction 
medium may be varied to further control the distribution of 
hydrocarbon products. 

Note Added in Proof. Further experiments have demon­
strated the following effects upon rate and hydrocarbon 
product distribution. Higher reaction temperatures (200 0C) 
lowered both the apparent rate (conversion) and the C2/C1 
product ratio; increased hydrogen chloride concentration had 
a similar effect. Short contact times shifted the product dis­
tribution to favor CiHs and /-C4H10. Substitution of BBr3 for 
the NaCl-2AlCl3 reaction medium gave an active reaction 
system that produced CH4, C2H6, C3H8, /-C4H10, and n-
C4H10 with the last two the major and minor constituents, 
respectively. 
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An Extension of the Role of 0(2) of Cytosine Residues 
in the Binding of Metal Ions. Synthesis and Structure 
of an Unusual Polymeric Silver(I) Complex 
of 1-Methylcytosine 

Sir: 

Extensive investigations into the interaction of metal ions 
with nucleic acids and nucleic acid coi:-tituents have identified 
the ring nitrogen atoms as the majc ending sites on the het­
erocyclic purine and pyrimidine base- ; ! In comparison, fewer 
studies have definitively shown invo,-, cment in metal binding 
of the exocyclic groups of these heterocycles.',2 The interaction 
of Ag+ ion with nucleic acids has been well studied and occurs 
primarily at guanosine-cytidine (G-C) regions of DNA.N4 

Although this preferential binding has been exploited to sep­
arate nucleic acids of different G-C content,4 there have been 
no structural studies on Ag(I) complexes of either G or C de­
rivatives. 

We report here on a study of the product formed between 
AgN03 and 1-methylcytosine. In the solid, the exocyclic 
oxygen at C(2) of the base u? cxpectedly exhibits strong 
binding to one Ag(I) and weaker, but still appreciable inter­
action, with a second Ag(I). Sudi bridging by an exocyclic 
group of a common nucleic acid base has not been previously 
observed.1-2 The Ag(I) geometry has unusual features, and we 
are not aware of an analogous Ag(I) to carbonyl oxygen in­
teraction. Furthermore, uhe columnar stacking of the 1-
methylcytosine moieties affords a better comparison to the 
situation which might prevail in the biopolymer complex than 
is typically found in studies of monomer complexes. 

The complex was prepared by the reaction of equal molar 
quantities of AgN03 and protonated 1-methylcytosine per-
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Figure 1. The structure of the complex [(l-methylcytosine)silver(I)] ni­
trate. Two dimers in the columnar stack along the c axis are displayed. 
0(2') is related to 0(2) by the transformation —x, —y, —z; 0(2") is related 
toO(2)by-.v. ->•, -1 -z . 

chlorate in dilute nitric acid (pH 3). After about 3 days, clear 
colorless crystals of the complex were harvested. The complex 
is slightly photosensitive, turning to a light-gray color after 
several weeks. Crystal data are as follows: a = 10.474 (3) A, 
b= 11.141 (3) A, c = 3.642 (I)A, a = 97.33 (2)°, /3 = 95.82 
(2)°, 7 = 76.76(2)°, V = 409.2 A3, Z = 2, space group Pl. 
Intensity data for 1838 symmetry-averaged reflections were 
collected on a Syntex P-I automated diffractometer, employing 
Mo radiation and the 6-26 scan technique. The structure was 
solved by Patterson methods and has been refined by the 
least-squares technique (anisotropic refinement of the 
nonhydrogen atoms and isotropic refinement of the hydrogen 
atoms) to a final R value of 0.033. 

Some aspects of the structure of the [(1-methylcytosine) 
silver(I)] nitrate complex are illustrated in Figure 1. The most 
pronounced structural feature is the formation of centrosym-
metric dimers in which the 1-methylcytosine ligands bridge 
two Ag ions, see Figure 1. Within these dimers, there are two 
strong metal-to-ligand bonds: Ag-N(3) = 2.225 (2) A and 
Ag-0(2') = 2.367 (2) A. The N(3)-Ag-0(2') bond angle at 
136.2 (2)° is very nonlinear even in comparison to other di-
meric systems involving Ag(I) (e.g., the Ag(I) complexes of 
glycine and the glycinate anion, ref 5, where the Ag-O dis­
tances are about 2.2 A and the O-Ag-0 angles are about 
160°). The Ag-Ag distance across the crystallographic in­
version center is 3.370 (I)A, and can be compared to the value 
of 2.9 A found in the glycine dimers.5 

The dimers are formed into columnar stacks along the c axis, 
Figure 1, and connected by Ag-0(2") bonds (Ag-0(2") = 
2.564 (3) A). The Ag-Ag (or 0(2 ' )-0(2") repeat length in 
this polymeric bridging system is 3.642 A, the length of the c 
axis. The 0(2')-Ag-0(2") bond angle is 95.1 (2)°. Within 
these columnar arrays, there is significant base-base overlap 
(mean distance = 3.34 A). The coordination sphere about the 
silver is completed by a Ag-0(5) [nitrate] bond at 2.469 (3) 
A. While the coordination sphere about the Ag(I) does not 
rigorously correspond to any common coordination polyhedra, 
it most closely approximates a trigonal pyramid. 

The formation of the Ag-N(3) bond was anticipated, but 
the role that 0(2) of the 1-methylcytosine base plays, both 
within the dimers and in the propagation of the columns along 
the c axis, suggests a wider scope than has previously been 
appreciated for this ligating atom. We have recently suggested 
that the binding of copper(II) to cytosine derivatives6 may well 
be enhanced by the formation of an intramolecular chelate 
system involving Cu-N(3) and Cu-0(2) bonds. Furthermore, 
in a study of an octahedral complex of Mn(II) and cytosine 

5'-monophosphate,7 the Mn(II) forms a strong bond, 2.08 (3) 
A, to 0(2) of the 5'-CMP ring. It is interesting that Mn(Il), 
which normally prefers hard donors, and Ag(I), which nor­
mally prefers soft donors, both form strong bonds to 0(2) of 
a cytosine derivative. This previously unrecognized versatility 
in the binding of metal ions by the carbonyl group 0(2)=C(2) 
of cytosine contrasts with the lack of evidence that the 6-oxo 
group of guanine derivatives plays anywhere near such a sig­
nificant role in direct metal binding. The 6-oxo group can form 
a weak bond to a metal center in concert with a strong metal-
N(7) bond.8 

The binding mode observed in the dimeric units provides a 
partial model for the cross-linking of two strands of a DNA 
helix. The Ag-Ag repeat length (3.642 A) in the polymeric, 
columnar stacks is reminiscent of the base-base stacking dis­
tance of about 3.5 A in duplex DNA.9 These nearly com­
mensurate spacings suggest that cooperative propagation of 
base-Ag-base polymers parallel to the helix axis could be in­
duced. In light of the versatility of 0(2) of cytosine, both of 
these features could be readily accommodated in regions of 
high G-C content. 
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A Novel Substituent Effect in the Intramolecular 
Cycloaddition Reactions of Nitrile Ylides1 

Sir: 
Nitrile ylides are members of a class of 1,3-dipoles which 

contain a central nitrogen atom and a 7r-bond orthogonal to 
the 4ir-allyl system.21,3-Dipolar cycloaddition of this dipole 
has been widely investigated3'4 and in many cases had led to 
the synthesis of a variety of interesting heterocyclic com­
pounds,5 some of which would be tedious to synthesize by other 
routes. Recent ab initio LCAO-MO-SCF calculations by 
Houk and Caramella6 have suggested that the nonplanar bent 
nitrile ylide geometry is favored over the linear form. The 
system still resembles the normal three-orbital, four-electron 
system present in other 1,3-dipoles so that concerted 1,3-di-
polar cycloadditions can still occur. The bent geometry of the 
ylide7 nicely rationalizes the intramolecular 1,1-cycloadditions 
observed with this 1,3-dipole.8 Houk's calculations also indicate 
that electron-releasing substituents on the 3-carbon of the ylide 
should increase the preference for the bent geometry while 
electron-withdrawing groups at C-3 should favor linearization 
of the dipole. We now wish to report evidence which corrobo-
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